Spread Spectrum Code Design for MIMO Radar Estimation Using Compressive Sensing Modeling

نویسندگان

  • Sindhuri Shyamala
  • Prasanna Kumar
چکیده

We consider the problem of multipletarget estimation using a collocated multiple-input multiple-output (MIMO) radar system. We employ sparse modeling to estimate the unknown target parameters (delay, Doppler) using a MIMO radar system that transmits frequencyhopping waveforms. We formulate the measurement model using a block sparse representation. We adaptively design the transmit waveform parameters (frequencies, amplitudes) to improve the estimation performance. Firstly, we derive analytical expressions for the correlations between the different blocks of columns of the sensing matrix. Using these expressions, we compute the block coherence measure of the dictionary. We use this measure to optimally design the sensing matrix by selecting the hopping frequencies for all the transmitters. Secondly, we adaptively design the amplitudes of the transmitted waveforms during each hopping interval to improve the estimation performance. Further, we employ compressive sensing to conduct accurate estimation from far fewer samples than

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient two-dimensional compressive sensing in MIMO radar

Compressive sensing (CS) has been a way to lower sampling rate leading to data reduction for processing in multiple-input multiple-output (MIMO) radar systems. In this paper, we further reduce the computational complexity of a pulse-Doppler collocated MIMO radar by introducing a two-dimensional (2D) compressive sensing. To do so, we first introduce a new 2D formulation for the compressed receiv...

متن کامل

CSSF MIMO RADAR: Low-Complexity Compressive Sensing Based MIMO Radar That Uses Step Frequency

A new approach is proposed, namely CSSF MIMO radar, which applies the technique of step frequency (SF) to compressive sensing (CS) based multi-input multi-output (MIMO) radar. The proposed approach enables high resolution range, angle and Doppler estimation, while transmitting narrowband pulses. The problem of joint angle-Doppler-range estimation is first formulated to fit the CS framework, i.e...

متن کامل

Measurement Matrix Design for Compressive Sensing Based MIMO Radar

In colocated multiple-input multiple-output (MIMO) radar using compressive sensing (CS), a receive node compresses its received signal via a linear transformation, referred to as measurement matrix. The samples are subsequently forwarded to a fusion center, where an l1-optimization problem is formulated and solved for target information. CS-based MIMO radar exploits the target sparsity in the a...

متن کامل

Compressive Sensing Based Parameter Esti- Mation for Monostatic Mimo Noise Radar

The novelty of this letter is that it capitalizes on noise waveform to construct measurement operator at the transmitter and presents a new method of how the analogue to digital converter (ADC) sampling rate in the monostatic multiple-input multiple-output (MIMO) noise radar can be reduced — without reduction in waveform bandwidth — through the use of compressive sensing (CS). The proposed meth...

متن کامل

Power Allocation and Measurement Matrix Design for Block CS-Based Distributed MIMO Radars

—Multiple-input multiple-output (MIMO) radars offer higher resolution, better target detection, and more accurate target parameter estimation. Due to the sparsity of the targets in space-velocity domain, we can exploit Compressive Sensing (CS) to improve the performance of MIMO radars when the sampling rate is much less than the Nyquist rate. In distributed MIMO radars, block CS methods can be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013